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A B S T R A C T

Background

Advanced disease-surveillance systems have been deployed worldwide to provide early
detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve
the overall detection capabilities of these systems can have a broad practical impact.
Furthermore, most current generation surveillance systems are vulnerable to dramatic and
unpredictable shifts in the health-care data that they monitor. These shifts can occur during
major public events, such as the Olympics, as a result of population surges and public closures.
Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-
well flooding emergency departments or, conversely, the public staying away from hospitals
for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in
health-care utilization, either because they do not adjust baselines and alert-thresholds to new
utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result,
public-health crises and major public events threaten to undermine health-surveillance systems
at the very times they are needed most.

Methods and Findings

To address this challenge, we introduce a class of epidemiological network models that
monitor the relationships among different health-care data streams instead of monitoring the
data streams themselves. By extracting the extra information present in the relationships
between the data streams, these models have the potential to improve the detection
capabilities of a system. Furthermore, the models’ relational nature has the potential to increase
a system’s robustness to unpredictable baseline shifts. We implemented these models and
evaluated their effectiveness using historical emergency department data from five hospitals in
a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological
Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by
the Children’s Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and
Technology on behalf of the Massachusetts Department of Public Health. We performed
experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline
shifts of different types and magnitudes. The results show that the network models provide
better detection of localized outbreaks, and greater robustness to unpredictable shifts than a
reference time-series modeling approach.

Conclusions

The integrated network models of epidemiological data streams and their interrelationships
have the potential to improve current surveillance efforts, providing better localized outbreak
detection under normal circumstances, as well as more robust performance in the face of shifts
in health-care utilization during epidemics and major public events.

The Editors’ Summary of this article follows the references.
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Introduction

Understanding and monitoring large-scale disease patterns
is critical for planning and directing public-health responses
during pandemics [1–5]. In order to address the growing
threats of global infectious disease pandemics such as
influenza [6], severe acute respiratory syndrome (SARS) [7],
and bioterrorism [8], advanced disease-surveillance systems
have been deployed worldwide to monitor epidemiological
data such as hospital visits [9,10], pharmaceutical orders [11],
and laboratory tests [12]. Improving the overall detection
capabilities of these systems can have a wide practical impact.
Furthermore, it would be beneficial to reduce the vulner-
ability of many of these systems to shifts in health-care
utilization that can occur during public-health emergencies
such as epidemics and pandemics [13–15] or during major
public events [16].

We need to be prepared for the shifts in health-care
utilization that often accompany major public events, such as
the Olympics, caused by population surges or closures of
certain areas to the public [16]. First, we need to be prepared
for drops in health-care utilization under emergency con-
ditions, including epidemics and pandemics where the public
may stay away from hospitals for fear of being infected, as
66.7% reported doing so during the SARS epidemic in Hong
Kong [13]. Similarly, a detailed study of the Greater Toronto
Area found major drops in numerous types of health-care
utilization during the SARS epidemic, including emergency
department visits, physician visits, inpatient and outpatient
procedures, and outpatient diagnostic tests [14]. Second, the
‘‘worried-well’’—those wrongly suspecting that they have
been infected—may proceed to flood hospitals, not only
stressing the clinical resources, but also dramatically shifting
the baseline from its historical pattern, potentially obscuring
a real signal [15]. Third, public-health interventions such as
closures, quarantines, and travel restrictions can cause major
changes in health-care utilization patterns.

Such shifts threaten to undermine disease-surveillance
systems at the very times they are needed most. During
major public events, the risks and potential costs of
bioterrorist attacks and other public-health emergencies
increase. During epidemics, as health resources are already
stretched, it is important to maintain disease outbreak–
surveillance capabilities and situational awareness [4,5]. At
present, many disease-surveillance systems rely either on
comparing current counts with historical time-series models,
or on identifying sudden increases in utilization (e.g.,
cumulative sum [CUSUM] or exponential weighted moving
average [EWMA] [9,10]). These approaches are not robust to
major shifts in health-care utilization: systems based on
historical time-series models of health-care counts do not
adjust their baselines and alert-thresholds to the new
unknown utilization levels, while systems based on identifying
sudden increases in utilization may be falsely triggered by the
utilization shifts themselves.

In order to both improve overall detection performance
and reduce vulnerability to baseline shifts, we introduce a
general class of epidemiological network models that explic-
itly capture the relationships among epidemiological data
streams. In this approach, the surveillance task is transformed
from one of monitoring health-care data streams, to one of
monitoring the relationships among these data streams: an

epidemiological network begins with historical time-series
models of the ratios between each possible pair of data
streams being monitored. (As described in Discussion, it may
be desirable to model only a selected subset of these ratios.)
These ratios do not remain at a constant value; rather, we
assume that these ratios vary in a predictable way according
to seasonal and other patterns that can be modeled. The
ratios predicted by these historical models are compared with
the ratios observed in the actual data in order to determine
whether an aberration has occurred. The complete approach
is described in detail below.
These network models have two primary benefits. First,

they take advantage of the extra information present in the
relationships between the monitored data streams in order to
increase overall detection performance. Second, their rela-
tional nature makes them more robust to the unpredictable
shifts described above, as illustrated by the following
scenario. The Olympics bring a large influx of people into a
metropolitan area for 2 wk and cause a broad surge in overall
health-care utilization. In the midst of this surge, a localized
infectious disease outbreak takes place. The surge in overall
utilization falsely triggers the alarms of standard biosurveil-
lance models and thus masks the actual outbreak. On the
other hand, since the surge affects multiple data streams
similarly, the relationships between the various data streams
are not affected as much by the surge. Since the network
model monitors these relationships, it is able to ignore the
surge and thus detect the outbreak.
Our assumption is that broad utilization shifts would affect

multiple data streams in a similar way, and would thus not
significantly affect the ratios among these data streams. In
order to validate this assumption, we need to study the
stability of the ratios around real-world surges. This assess-
ment is difficult to do, since for most planned events, such as
the Olympics, additional temporary health-care facilities are
set up at the site of the event in order to deal with the
expected surge. This preparation reduces or eliminates the
surge that is recorded by the permanent health-care system,
and therefore makes it hard to find data that describe surges.
However, some modest shifts do appear in the health-care
utilization data, and they are informative. We obtained data
on the 2000 Sydney Summer Olympics directly from the
Centre for Epidemiology and Research, New South Wales
Department of Health, New South Wales Emergency Depart-
ment Data Collection. The data show a 5% surge in visits
during the Olympics. While the magnitude of this shift is far
less dramatic than those expected in a disaster, the Sydney
Olympics nonetheless provide an opportunity to measure the
stability of the ratios under surge conditions. Despite the
surge, the relative rates of major syndromic groups remained
very stable between the same periods in 1999 and 2000. Injury
visits accounted for 21.50% of overall visits in 1999,
compared with an almost identical 21.53% in 2000. Gastro-
enteritis visits accounted for 5.84% in 1999, compared with
5.75% in 2000. As shown in Table 1, the resulting ratios
among the different syndromic groups remained stable.
Although we would have liked to examine the stability of
ratios in the face of a larger surge, we were not able to find a
larger surge for which multi-year health-care utilization data
were available. It is important to note that while the above
data about a planned event are informative, surveillance
systems need to be prepared for the much larger surges that
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would likely accompany unplanned events, such as pandem-
ics, natural disasters, or other unexpected events that cause
large shifts in utilization.

Initial motivation for this work originated as a result of the
authors’ experience advising the Hellenic Center for Infec-
tious Diseases Control in advance of the 2004 Summer
Olympics in Athens [17], where there was concern that a
population surge caused by the influx of a large number of
tourists would significantly alter health-care utilization
patterns relative to the baseline levels recorded during the
previous summer. The epidemiological network model was
then formalized in the context of the US Centers for Disease
Control and Prevention’s nationwide BioSense health-sur-
veillance system [18], for which the authors are researching
improved surveillance methods for integration of inputs
from multiple health-care data streams. BioSense collects and
analyzes health-care utilization data, which have been made
anonymous, from a number of national data sources,
including the Department of Defense and the Veteran’s
Administration, and is now procuring local emergency
department data sources from around the United States.

In order to evaluate the practical utility of this approach
for surveillance, we constructed epidemiological network
models based on real-world historical health-care data and
compared their outbreak-detection performance to that of
standard historical models. The models were evaluated using
semi-synthetic data-streams—real background data with
injected outbreaks—both under normal conditions and in
the presence of different types of baseline shifts.

Methods

Data
The proposed epidemiological network model is compared

with a previously described reference time-series model [19].
Both models are used to detect simulated outbreaks
introduced into actual historical daily counts for respira-
tory-related visits, gastrointestinal-related visits, and total
visits at five emergency departments in the same metropol-
itan area. The data cover a period of 1,619 d, or roughly 4.5 y.
The first 1,214 d are used to train the models, while the final
405 d are used to test their performance.

The data are collected by the Automated Epidemiological
Geotemporal Integrated Surveillance (AEGIS) real-time
public health–surveillance system, developed by the Child-

ren’s Hospital Informatics Program at the Harvard-MIT
Division of Health Sciences and Technology on behalf of
the Massachusetts Department of Public Health. AEGIS fully
automates the monitoring of emergency departments across
Massachusetts. The system receives automatic updates from
the various health-care facilities and performs outbreak
detection, alerting, and visualization functions for public-
health personnel and clinicians. The AEGIS system incorpo-
rates both temporal and geospatial approaches for outbreak
detection.

Network Construction and Training
The goal of an epidemiological network model is to model

the historical relationships among health-care data streams
and to interpret newly observed data in the context of these
modeled relationships. In the training phase, we construct
time-series models of the ratios between all possible pairs of
health-care utilization data streams. These models capture
the weekly, seasonal, and long-term variations in these ratios.
In the testing phase, the actual observed ratios are compared
with the ratios predicted by the historical models.
We begin with N health-care data streams, Si, each

describing daily counts of a particular syndrome category at
a particular hospital. For this study, we use three syndromic
categories (respiratory, gastrointestinal, and total visits) at
five hospitals, for a total of N¼ 15 data streams. All possible
pair-wise ratios are calculated among these N data streams,
for a total of N2 � N ¼ 210 ratios, Rij: for each day, t, we
calculate the ratio of the daily counts for stream Si to the daily
counts for stream Sj.

RijðtÞ ¼ SiðtÞ=SjðtÞ ð1Þ

For each ratio, the numerator Si is called the target data
stream, and the denominator Sj is called the context data stream,
since the target data stream is said to be interpreted in the
context of the context data stream, as described below. A
sample epidemiological network consisting of 30 nodes and
210 edges is shown in Figure 1. The nodes in the network
represent the data streams: each of the N data streams
appears twice, once as a context data stream and another
time as a target data stream. Edges represent ratios between
data streams: namely, the target data stream divided by the
context data stream.
To train the network, a time-series model, R�ij, is fitted for

each ratio, Rij, over the training period using established
time-series methods [19]. The data are first smoothed with a
7-d exponential filter (EWMA with coefficient 0.5) to reduce
the effects of noise [20]. The linear trend is calculated and
subtracted out, then the overall mean is calculated and
subtracted out, then the day-of-week means (seven values) are
calculated and subtracted out, and finally the day-of-year
means (365 values) are calculated. In order to generate
predictions from this model, these four components are
summed, using the appropriate values for day of the week,
day of the year, and trend. The difference between each
actual ratio, Rij, and its corresponding modeled prediction,
R�ij, is the error, Eij.

EijðtÞ ¼ RijðtÞ � �RijðtÞ ð2Þ

Network Operation
During network operation, the goal of the network is to

determine the extent to which the observed ratios among the

Table 1. Stability of Ratios between Different Pairs of Syndromic
Groups in Sydney in August 1999, and during the Same Period
during the 2000 Summer Olympics

Ratio 1999 2000 Change (%)

Injury/Total 0.2150 0.2153 0.11

GI/Total 0.0584 0.0575 �1.46

Injury/GI 3.6848 3.7435 1.59

GI/Injury 0.2714 0.2671 �1.57

Total/Injury 4.6505 4.6452 �0.11

Total/GI 17.1360 17.3891 1.48

Despite a 5% population surge, the ratios remain stable.
GI, gastrointestinal.
doi:10.1371/journal.pmed.0040210.t001
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data streams differ from the ratios predicted by the historical
models. Observed ratios, rij, are calculated from the observed
data, and are compared with the expected ratios to yield the
observed errors, eij:

eijðtÞ ¼ rijðtÞ � �RijðtÞ ð3Þ

In order to interpret the magnitudes of these deviations
from the expected values, the observed errors are compared
with the historical errors from the training phase. A
nonparametric approach is used to rank the current error
against the historical errors. This rank is divided by the
maximum rank (1þ the number of training days), resulting in
a value of between 0 and 1, which is the individual aberration
score, wij.

wijðtÞ ¼ RANKðeijðtÞÞ=Maxrank ð4Þ

Conceptually, each of the individual aberration scores, wij,
represents the interpretation of the activity of the target data
stream, Si, from the perspective of the activity at the context
data stream, Sj: if the observed ratio between these two data
streams is exactly as predicted by the historical model, eij is
equal to 0 and wij is equal to a moderate value. If the target
data stream is higher than expected, eij is positive and wij is a
higher value closer to 1. If it is lower than expected, eij is

positive and wij is a lower value closer to 0. High aberration
scores, wij, are represented by thicker edges in the network
visualization, as shown in Figure 1.
Some ratios are more unpredictable than others—i.e., they

have a greater amount of variability that is not accounted for
by the historical model, and thus a greater modeling error.
The nonparametric approach to evaluating aberrations
adjusts for this variability by interpreting a given aberration
in the context of all previous aberrations for that particular
ratio during the training period.
It is important to note that each individual aberration

score, wij, can be affected by the activities of both its target
and context data streams. For example, it would be unclear
from a single high wij score as to whether the target data
stream is unexpectedly high or whether the context data
stream is unexpectedly low. In order to obtain an integrated
consensus view of a particular target data stream, Si, an
integrated consensus score, ci, is created by averaging
together all the aberration scores that have Si as the target
data stream (i.e., in the numerator of the ratio). This
integrated score represents the collective interpretation of
the activity at the target node, from the perspective of all the
other nodes:

Figure 1. An Epidemiological Network Containing 15 Data Streams from Five Hospitals, Shown Responding to a Simulated Outbreak in Data Stream T-5

Each data stream appears twice in the network. The context nodes on the left are used for interpreting the activity of the target nodes on the right.
Each edge represents the ratio of the target node divided by the context node, with a thicker edge indicating that the ratio is higher than expected.
doi:10.1371/journal.pmed.0040210.g001
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ci ¼
1

n� 1

X

j;j 6¼i
wij ð5Þ

or

ci ¼
1

n� 1

X

j;j 6¼i

RANKðeijÞ
Maxrank

: ð6Þ

An alarm is generated whenever ci is greater than a
threshold value cthresh. As described below, this threshold
value is chosen to achieve a desired specificity. The non-
parameteric nature of the individual aberration scores
addresses the potential issue of outliers that would normally
arise when taking an average. It is also important to note that
while the integrated consensus score helps to reduce the
effects of fluctuations in individual context data streams, it is

still possible for an extreme drop in one context data stream
to trigger a false alarm in a target data stream. This is
particularly true in networks having few context data streams.
In the case of only one context data stream, a substantial
decrease in the count in the context data stream will trigger a
false alarm in the target data stream.

Reference Time-Series Model
For comparison, we also implement a reference time-series

surveillance approach that models each health-care data
stream directly, instead of modeling the relationships
between data streams as above. This model uses the same
time-series modeling methods described above and previ-
ously [19]. First, the daily counts data are smoothed with a 7-d
exponential filter. The linear trend is calculated and
subtracted out, then the overall mean is calculated and
subtracted out, and then the mean for each day of the week
(seven values) is calculated and subtracted out. Finally, the
mean for each day of the year (365 values) is calculated and
subtracted out. To generate a prediction, these four
components are added together, taking the appropriate
values depending on the particular day of the week and day
of the year. The difference between the observed daily counts
and the counts predicted by the model is the aberration score
for that data stream. An alarm is generated whenever this
aberration score is greater than a threshold value, chosen to
achieve a desired level of specificity, as described below. By
employing identical time-series methods for modeling the
relationships between the streams in the network approach
and modeling the actual data streams themselves in the
reference approach, we are able to perform a controlled
comparison between the two approaches.

Simulated Outbreaks
Following established methods [19–21], we use semi-

synthetic localized outbreaks to evaluate the disease-mon-
itoring capabilities of the network. The injected outbreaks
used here follow a 7-d lognormal temporal distribution
(Figure 2), representing the epidemiological distribution of

Figure 2. The Relative Magnitudes for each Day of the 7-d Outbreaks

Used In the Simulations

The magnitudes follow a lognormal outbreak curve.
doi:10.1371/journal.pmed.0040210.g002

Table 2. Average Sensitivity Comparisons for Network and Reference Models Measured at 90%, 95%, 97%, and 99% Specificity, and
Averaged for all Four Specificity Values

Specificity Values Outbreak Type Reference Model

Sensitivity (%)

Network Model

Sensitivity (%)

Difference

in Sensitivity (%)

Relative Increase

in Sensitivity (%)

Specificity: 90% Respiratory 35.2 6 2.1 41.7 6 2.2 6.5 6 2.2 18.4

Gastrointestinal 27.3 6 1.9 33.7 6 2.1 6.3 6 2.1 23.2

Total 79.1 6 1.8 78.4 6 1.8 �0.7 6 1.8 �0.9

Specificity: 95% Respiratory 25.6 6 1.9 30.5 6 2.0 4.9 6 1.9 19.1

Gastrointestinal 17.7 6 1.7 23.7 6 1.9 6.0 6 2.0 34.1

Total 71.9 6 2.0 69.8 6 2.0 �2.2 6 2.0 �3.0

Specificity: 97% Respiratory 20.4 6 1.8 23.9 6 1.9 3.5 6 1.9 16.9

Gastrointestinal 13.1 6 1.5 16.8 6 1.6 3.7 6 1.6 28.6

Total 63.5 6 2.1 56.0 6 2.2 �7.5 6 2.2 �11.8

Specificity: 99% Respiratory 11.2 6 1.4 14.8 6 1.5 3.6 6 1.5 32.1

Gastrointestinal 7.8 6 1.2 9.5 6 1.3 1.7 6 1.3 22.2

Total 51.7 6 2.2 39.3 6 2.1 �12.4 6 2.2 �24.0

Average for all four specificity values Respiratory 23.1 6 1.0 27.7 6 1.0 4.6 6 1.0 19.9

Gastrointestinal 16.5 6 0.8 20.9 6 0.9 4.3 6 0.9 26.1

Total 66.5 6 1.0 60.9 6 1.0 �5.4 6 1.0 �8.1

doi:10.1371/journal.pmed.0040210.t002
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incubation times resulting from a single-source common
vehicle infection, as described by Sartwell [22]. When
injecting outbreaks into either respiratory- or gastrointesti-
nal-related data streams, the same number of visits is also
added to the appropriate total-visits data stream for that
hospital in order to maintain consistency.

Multiple simulation experiments are performed, varying
the number of data streams used in the network, the target
data stream, Si, into which the outbreaks are introduced, and
the magnitude of the outbreaks. While many additional
outbreak types are possible, the simulated outbreaks used
here serve as a paradigmatic set of benchmark stimuli for

gauging the relative outbreak-detection performance of the
different surveillance approaches.

Results

Network Performance
We constructed epidemiological networks from respira-

tory, gastrointestinal, and total daily visit data from five
hospitals in a single metropolitan area, for a total of 15 data
streams, Si (N ¼ 15). In training the network, we modeled all
possible pair-wise ratios between the 15 data streams, for a
total of 210 ratios. For comparison, we implemented the
reference time–series surveillance model described above,
which uses the same time-series methods but instead of
modeling the epidemiological relationships, models the 15
data streams directly. Semi-synthetic simulated outbreaks
were used to evaluate the aberration-detection capabilities of
the network, as described above. We simulated outbreaks
across a range of magnitudes occurring at any one of the 15
data streams. For the first set of experiments, 486,000 tests
were performed: 15 target data streams3 405 d of the testing
period 3 40 outbreak sizes (with a peak magnitude increase
ranging from 2.5% to 100.0%) 3 two models (network versus
reference). For the purposes of systematic comparison
between the reference and network models, we allowed for
the addition of fractional cases in the simulations.
We compared the detection sensitivities of the reference

and network models by fixing specificity at a benchmark 95%
and measuring the sensitivity of the model. In order to
measure sensitivity at a desired specificity, we gradually
increased the alarm threshold incrementally from 0 to the
maximum value until the desired specificity was reached. We
then measured the sensitivity at the same threshold.
Sensitivity is defined in terms of outbreak-days—the propor-
tion of all days during which outbreaks were occurring such
that an alarm was generated. At 95% specificity, the network
approach significantly outperformed the reference approach
in detecting respiratory and gastrointestinal outbreaks,

Table 3. Basic Statistical Characterization of Data Streams

Visits Data

Stream

Mean Standard

Deviation

Standard

Deviation

to Mean Ratio

Total visits T-1 137.33 20.47 0.15

T-2 128.98 16.76 0.13

T-3 90.94 12.34 0.14

T-4 59.76 9.49 0.16

T-5 78.67 12.04 0.15

Average 99.14 14.22 0.15

Respiratory R-1 18.91 8.11 0.43

R-2 11.43 4.09 0.36

R-3 9.84 4.23 0.43

R-4 6.91 3.25 0.47

R-5 8.95 3.89 0.43

Average 11.21 4.71 0.42

Gastrointestinal G-1 19.09 6.76 0.35

G-2 15.11 4.40 0.29

G-3 5.79 2.67 0.46

G-4 4.48 2.17 0.49

G-5 5.26 2.47 0.47

Average 9.95 3.70 0.41

doi:10.1371/journal.pmed.0040210.t003

Figure 3. The Simulated Outbreaks Inserted at Periodic Intervals into

Node T-5, Shown at Bottom of the Plot

The responses of the 210 individual aberration scores are shown,
grouped by target node.
doi:10.1371/journal.pmed.0040210.g003

Figure 4. The Integrated Consensus Scores for each Target Data Stream

The integrated consensus score for T-5 successfully reconstructs the
simulated outbreaks presented to the system.
doi:10.1371/journal.pmed.0040210.g004
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yielding 4.9% 6 1.9% and 6.0% 6 2.0% absolute increases in
sensitivity, respectively (representing 19.1% and 34.1%
relative improvements in sensitivity, respectively), for out-
breaks characterized by a 37.5% increase on the peak day of
the outbreak (Table 2). We found this ordering of sensitivities
to be consistent over the range of outbreak sizes. For
outbreaks introduced into the total-outbreak signals, the
reference model achieved 2.1% 6 2% better absolute
sensitivity than the network model (2.9% difference in
relative sensitivity). This result is likely because the total-visit
signals are much larger in absolute terms, and therefore the
signal-to-noise ratio is higher (Table 3), making it easier for
the reference model to detect the outbreaks. The ‘‘total
outbreak’’ experiments were run for reasons of comprehen-
siveness, but it should be noted that there is no clear

epidemiological correlate to an outbreak that affects all
syndrome groups, other than a population surge, which the
network models are designed to ignore as described in the
discussion section. Also, an increase in total visits without an
increase in respiratory or gastrointestinal visits may corre-
spond to an outbreak in yet another syndrome category.
Table 2 also shows results for the same experiments at three
other practical specificity levels, and an average for all four
specificity levels. In all cases, the network approach performs
better for respiratory and gastrointestinal outbreaks and the
reference model performs better in total-visit outbreaks.
By visually inspecting the response of the network model to

the outbreaks, it can be seen that while the individual
aberration scores exhibited fairly noisy behavior throughout
the testing period (Figure 3), the integrated consensus scores

Figure 5. The 77 Possible Homogeneous Context Networks for Respiratory Target Data Stream R-3

Each network contains the target node plus a number of additional nodes of one type. In total, 1,155 networks are created and analyzed (15 target data
streams 3 77 networks). Red denotes total visits, green indicates respiratory, and blue indicates gastrointestinal.
doi:10.1371/journal.pmed.0040210.g005

Figure 6. The Effects of Network Size and Membership on Detection Performance

Each data point represents the sensitivity obtained from all the networks having particular size and membership characteristics, when presented with
outbreaks in each of the five data streams for each target data stream type. In total, 467,775 tests are performed (1,155 networks 3 405 d). Error bars
shown are standard errors. Red denotes total visits, green indicates respiratory, and blue indicates gastrointestinal.
doi:10.1371/journal.pmed.0040210.g006
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consolidated the information from the individual aberration
scores, reconstructing the simulated outbreaks presented to
the system (Figure 4).

Effects of Network Composition
Next, we studied the effects of different network compo-

sitions on detection performance, constructing networks of
different sizes and constituent data streams (Figure 5). For
each target data stream, we created 77 different homoge-
neous context networks—i.e., networks containing the target
data stream plus between one and five additional data
streams of a single syndromic category. In total, 1,155
networks were created and analyzed (15 target data streams

3 77 networks). We then introduced simulated outbreaks
characterized by a 37.5% increase in daily visit counts over
the background counts in the target data stream on the peak
day of the outbreak into the target data stream of each
network, and calculated the sensitivity obtained from all the
networks having particular size and membership character-
istics, for a fixed benchmark specificity of 95%. In total,
467,775 tests were performed (1,155 networks 3 405 d).
We found that detection performance generally increased

with network size (Figure 6). Furthermore, regardless of
which data stream contained the outbreaks, total-visit data
streams provided the best context for detection. This is
consistent with the greater statistical stability of the total-

Figure 7. Systematic Comparison of Different Network Constructions:

Respiratory Target Signals

The average detection sensitivities are shown for 31 different context
networks. Each column represents a different context group (total visits
at the same hospital, gastrointestinal visits at the same hospital, total
visits at all other hospitals, respiratory visits at all other hospitals, and
gastrointestinal visits at other hospitals). Each row represents a different
network construction. A cell is colored if the context group represented
by that column was used in the network for that row. Rows are ranked
by the average sensitivity achieved.
doi:10.1371/journal.pmed.0040210.g007

Figure 8. Systematic Comparison of Different Network Constructions:

Gastrointestinal Target Signals

The average detection sensitivities are shown for 31 different context
networks. Each column represents a different context group (total visits
at the same hospital, respiratory visits at the same hospital, total visits at
all other hospitals, respiratory visits at all other hospitals, and gastro-
intestinal visits at other hospitals). Each row represents a different
network construction. A cell is colored if the context group represented
by that column was used in the network for that row. Rows are ranked
by the average sensitivity achieved.
doi:10.1371/journal.pmed.0040210.g008
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visits data streams, which on average had a far smaller
variability (Table 3). Total data streams were also the easiest
target data streams in which to detect outbreaks, followed by
respiratory data streams, and then by gastrointestinal data
streams. This result is likely because the number of injected
cases is a constant proportion of stream size. For a constant
number of injected cases, total data streams would likely be
the hardest target data streams for detection.

Next, we systematically compared the performance advant-
age gained from five key context groups. For a respiratory
target signal, the five groups were as follows: (1) total visits at
the same hospital; (2) total visits at all other hospitals; (3)
gastrointestinal visits at the same hospital; (4) gastrointestinal

visits at all other hospitals; and (5) respiratory visits at all
other hospitals. If the target signal comprised gastrointestinal
or total visits, the five context groups above would be changed
accordingly, as detailed in Figures 7–9. Given the possibility
of either including or excluding each of these five groups,
there were 31 (25�1) possible networks for each target signal.
The results of the above analysis are shown for respiratory

(Figure 7), gastrointestinal (Figure 8), and total-visit target
signals (Figure 9). Each row represents a different network
construction. Rows are ranked by the average sensitivity
achieved over the five possible target signals for that table.
The following general trends are apparent. Total visits at all
the other hospitals were the most helpful context group
overall. Given a context of all the streams from the same
hospital, it is beneficial to add total visits from other
hospitals, as well as the same syndrome group from the other
hospitals. Beginning with a context of total visits from the
same hospital, there is a slight additional advantage in
including a different syndrome group from the same hospital.

Robustness to Epidemiological Shifts
In order to gauge the performance of the network and

reference models in the face of baseline shifts in health-care
utilization, we performed a further set of simulation experi-
ments, where, in addition to the simulated outbreaks of peak
magnitude 37.5%, we introduced various types and magni-
tudes of baseline shifts for a period of 200 d in the middle of
the 405-d testing period. We compared the performance of
the reference time-series model, the complete network
model, and a network model containing only total-visit
nodes. For respiratory and gastrointestinal outbreaks, we
also compared the performance of a two-node network
containing only the target data stream and the total-visit data
stream from the same hospital.
We began by simulating the effects of a large population

surge, such as might be seen during a large public event. We
did this by introducing a uniform increase across all data
streams for 200 d in the middle of the testing period. We
found that the detection performance of the reference model
degraded rapidly with increasing baseline shifts, while the
performance of the various network models remained stable
(Figure 10). We next simulated the effects of a frightened
public staying away from hospitals during an epidemic. We
did this by introducing uniform drops across all data streams
for 200 d. Here too, we found that the detection performance
of the reference model degraded rapidly with increasing
baseline shifts, while the performance of the various network
models remained robust (Figure 11).
We then simulated the effects of the ‘‘worried-well’’ on a

surveillance system by introducing targeted increases in only
one syndromic category—respiratory or gastrointestinal
(Figure 12). We compared the performance of the reference
model, a full-network model, the two-node networks de-
scribed above, and a homogeneous network model containing
only data streams of the same syndromic category as the
target data stream. The performance of the full and
homogeneous networks was superior to that of the reference
model. The homogeneous networks, consisting of solely
respiratory or gastrointestinal data streams, proved robust
to the targeted shifts and achieved consistent detection
performance even in the face of large shifts. This result is
consistent with all the ratios in these networks being affected

Figure 9. Systematic Comparison of Different Network Constructions:

Total-Visit Target Signals

The average detection sensitivities are shown for 31 different context
networks. Each column represents a different context group (respiratory
visits at the same hospital, gastrointestinal visits at the same hospital,
total visits at all other hospitals, respiratory visits at all other hospitals,
and gastrointestinal visits at other hospitals). Each row represents a
different network construction. A cell is colored if the context group
represented by that column was used in the network for that row. Rows
are ranked by the average sensitivity achieved.
doi:10.1371/journal.pmed.0040210.g009
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equally by the targeted baseline shifts. The performance of
the full network degraded slightly in the face of larger shifts,
while the performance of the two-node network degraded
more severely. These results are because the two-node
network did not include relationships that were unaffected
by the shifts that could help stabilize performance. It should
be noted that this same phenomenon—an increase in one
syndromic category across multiple locations—may also be
indicative of a widespread outbreak, as discussed further
below.

Discussion

In this paper, we describe an epidemiological network
model that monitors the relationships between health-care
utilization data streams for the purpose of detecting disease
outbreaks. Results from simulation experiments show that
these models deliver improved outbreak-detection perform-
ance under normal conditions compared with a standard
reference time-series model. Furthermore, the network
models are far more robust than the reference model to the
unpredictable baseline shifts that may occur around epidem-
ics or large public events. The results also show that
epidemiological relationships are inherently valuable for
surveillance: the activity at one hospital can be better
understood by examining it in relation to the activity at
other hospitals. In a previous paper [20], we showed the

benefits of interpreting epidemiological data in its temporal
context—namely, the epidemiological activity on surrounding
days [23]. In the present study, we show that it is also
beneficial to examine epidemiological data in its network
context—i.e., the activity of related epidemiological data
streams.
Based on the results obtained, it is clear that different types

of networks are useful for detecting different types of signals.
We present eight different classes of signals, their possible
interpretations, and the approaches that would be able to
detect them: the first four classes of signals involve increases
in one or more data streams. (1) A rise in one syndrome
group at a single location may correspond to a localized
outbreak or simply a data irregularity. Such a signal could be
detected by all network models as well as the reference model.
(2) A rise in all syndrome groups at a single location probably
corresponds to a geographical shift in utilization, (e.g., a
quarantine elsewhere), as an outbreak would not be expected
to cause an increase in all syndrome groups. Such a signal
would be detected by network models that include multiple
locations, and by the reference model. (3) A rise in one
syndrome group across all locations may correspond to a
widespread outbreak or may similarly result from the visits by
the ‘‘worried-well.’’ Such a signal would be detected by
network models that include multiple syndrome groups, and
by the reference model. (4) A rise in all syndrome groups in

Figure 10. Simulation of a Population Surge during a Large Public Event

To simulate a population surge during a large public event, all data streams are increased by a uniform amount (x-axis) for 200 d in the middle of the
testing period. Full networks, total-visit networks, two-node networks (target data stream and total visits at the same hospital), and reference models
are compared. Average results are shown for each target data stream type. Error bars are standard errors.
doi:10.1371/journal.pmed.0040210.g010

Figure 11. Simulation of a Frightened Public Staying Away from Hospitals during a Pandemic

To simulate a frightened public staying away from hospitals during a pandemic, all data streams are dropped by a uniform amount (x-axis) for 200 d in
the middle of the testing period. Full networks, total-visit networks, two-node networks (target data stream and total visits at the same hospital), and
reference models are compared. Average results are shown for each target data stream type. Error bars are standard errors.
doi:10.1371/journal.pmed.0040210.g011
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all locations probably corresponds to a population surge, as
an outbreak would not be expected to cause an increase in all
syndrome groups. This signal would be ignored by all network
models, but would be detected by the reference model.

The next four classes of signals involve decreases in one or
more data streams. All of these signals are unlikely to be
indicative of an outbreak, but are important for maintaining
situational awareness in certain critical situations. As
mentioned above, a significant decrease in a context data
stream has the potential to trigger a false alarm in the target
data stream, especially in networks with few context nodes.
This is particularly true in two-node networks, where there is
only one context data stream. (5) A fall in one syndrome
group at a single location does not have an obvious
interpretation. All models will ignore such a signal, since
they are set to alarm on increases only. (6) A fall in all
syndrome groups at a single location could represent a
geographical shift in utilization (e.g., a local quarantine). All
models will ignore such a signal. The baselines of all models
will be affected, except for network models that include only
nodes from single locations. (7) A fall in one syndrome group
at all locations may represent a frightened public. All models
will ignore such a signal. The baselines of all models will be
affected, except for network models that include only nodes
from single syndromic groups. (8) A fall in all data types at all
locations may represent a regional population decrease or a
frightened public staying away from hospitals out of concern
for nosocomial infection (e.g., during an influenza pandemic).
All models will ignore such a signal. The baseline of only the
reference model will be affected. From this overview, it is
clear that the network models are more robust than the
reference model, with fewer false alarms (in scenarios 2 and 4)
and less vulnerability to irregularities in baselines (in
scenarios 6–8).

Based on the results obtained, when constructing epide-
miological networks for monitoring a particular epidemio-
logical data stream, we recommend prioritizing the inclusion
of a total visits from all other hospitals, followed by total visits
from the same hospital, followed by data streams of the same
syndrome group from other hospitals and streams of differ-
ent syndrome groups from the same hospital, followed by
data streams of different syndrome groups from different
hospitals. We further recommend that, in addition to full-
network models, homogeneous network models (e.g., only
respiratory nodes from multiple hospitals) be maintained for

greater stability in the face of major targeted shifts in health-
care utilization.
The two-node networks described above are similar in

certain ways to the ‘‘rate’’-based approach used by a small
number of surveillance systems today [24–27]. Instead of
monitoring daily counts directly, these systems monitor daily
counts as a proportion of the total counts. For example, the
respiratory-related visits at a certain hospital could be
tracked as a percentage of the total number of visits to that
hospital, or alternatively, as a percentage of the total number
of respiratory visits in the region. These ‘‘rate’’-based
approaches have been proposed where absolute daily counts
are too unstable for modeling [24], or where population-at-
risk numbers are not available for use in spatiotemporal scan
statistics [25]. The approach presented here is fundamentally
different in that it explicitly models and tracks all possible
inter-data stream relationships, not just those between a
particular data stream and its corresponding total-visits data
stream. Furthermore, the present approach is motivated by
the desire to increase robustness in the face of large shifts in
health-care utilization that may occur during epidemics or
major public events. As such, this study includes a systematic
study of the models’ responses to different magnitudes of
both broad and targeted baseline shifts. The two-node
networks described above are an example of this general
class of ‘‘rate’’-based models. While the two-node approach
works well under normal conditions, it is not as robust to
targeted shifts in health-care utilization as larger network
models. The results therefore show that there is value in
modeling all, or a selected combination of the relationships
among health-care data streams, not just the relationship
between a data stream and its corresponding total-visits data
stream.
Modeling all these relationships involves an order-N

expansion of the number of models maintained internally
by the system: N2 � N models are used to monitor N data
streams. The additional information inherent in this larger
space is extracted to improve detection performance, after
which the individual model outputs are collapsed back to
form the N integrated outputs of the system. Since the
number of models grows quadratically with the number of
data streams, N, the method can become computationally
intensive for large numbers of streams. In such a case, the
number of models could be minimized by, for example,
constructing only networks that include nodes from different

Figure 12. Simulation of the Effects of the Worried-Well Flooding Hospitals during a Pandemic

To simulate the effects of the worried-well flooding hospitals during a pandemic, a targeted rise is introduced in only one type of data stream. Full
networks, respiratory- or gastrointestinal-only networks, two-node networks, and reference models are compared. Error bars are standard errors.
doi:10.1371/journal.pmed.0040210.g012
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syndrome groups but from the same hospital, or alternatively,
including all context nodes from the same hospital and only
total-visit nodes from other hospitals.

This work is different from other recent epidemiological
research that has described simulated contact networks of
individual people moving about in a regional environment
and transmitting infectious diseases from one person to
another. These simulations model the rate of spread of an
infection under various conditions and interventions and
help prepare for emergency scenarios by evaluating different
health policies. On the other hand, we studied relational
networks of hospitals monitoring health-care utilization in a
regional environment, for the purpose of detecting localized
outbreaks in a timely fashion and maintaining situational
awareness under various conditions. Our work is also focused
on generating an integrated network view of an entire health-
care environment.

Limitations of this study include the use of simulated
infectious disease outbreaks and baseline shifts. We use a
realistic outbreak shape and baseline shift pattern, and
perform simulation experiments varying the magnitudes of
both of these. While other outbreak shapes and baseline shift
patterns are possible, this approach allows us to create a
paradigmatic set of conditions for evaluating the relative
outbreak-detection performance of the various approaches
[21]. Another possible limitation is that even though our
findings are based on data across multiple disease categories
(syndromes), multiple hospitals, and multiple years, relation-
ships between epidemiological data streams may be different
in other data environments. Also, our methods are focused on
temporal modeling, and therefore do not have an explicit
geospatial representation of patient location, even though
grouping the data by hospital does preserve a certain degree
of geospatial information. The specific temporal modeling
approach used requires a solid base of historical data for the
training set. However, this modeling approach is not integral
to the network strategy, and one could build an operational
network by using other temporal modeling approaches.
Furthermore, as advanced disease-surveillance systems grow
to monitor an increasing number of data streams, the risk of
information overload increases. To address this problem,
attempts to integrate information from multiple data streams
have largely focused on detecting the multiple effects of a
single outbreak across many data streams [28–31]. The
approach described here is fundamentally different in that
it focuses on detecting outbreaks in one data stream by
monitoring fluctuations in its relationships to the other data
streams, although it can also be used for detecting outbreaks
that affect multiple data streams. We recommend using the
network approaches described here alongside current ap-
proaches to realize the complementary benefits of both.

These findings suggest areas for future investigation. There
are inherent time lags among epidemiological data streams:
for example, pediatric data have been found to lead adult
data in respiratory visits [32]. While the approach described
here may implicitly model these relative time lags, future
approaches can include explicit modeling of relative tempo-
ral relationships among data streams. It is also possible to
develop this method further to track outbreaks in multiple
hospitals and syndrome groups. It is further possible to study
the effects on timeliness of detection of different network
approaches. Also, while we show the utility of the network

approach for monitoring disease patterns on a regional basis,
networks constructed from national or global data may help
reveal important trends at wider scales.
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Editors’ Summary

Background. The main task of public-health officials is to promote
health in communities around the world. To do this, they need to
monitor human health continually, so that any outbreaks (epidemics) of
infectious diseases (particularly global epidemics or pandemics) or any
bioterrorist attacks can be detected and dealt with quickly. In recent
years, advanced disease-surveillance systems have been introduced that
analyze data on hospital visits, purchases of drugs, and the use of
laboratory tests to look for tell-tale signs of disease outbreaks. These
surveillance systems work by comparing current data on the use of
health-care resources with historical data or by identifying sudden
increases in the use of these resources. So, for example, more doctors
asking for tests for salmonella than in the past might presage an
outbreak of food poisoning, and a sudden rise in people buying over-
the-counter flu remedies might indicate the start of an influenza
pandemic.

Why Was This Study Done? Existing disease-surveillance systems don’t
always detect disease outbreaks, particularly in situations where there
are shifts in the baseline patterns of health-care use. For example, during
an epidemic, people might stay away from hospitals because of the fear
of becoming infected, whereas after a suspected bioterrorist attack with
an infectious agent, hospitals might be flooded with ‘‘worried well’’
(healthy people who think they have been exposed to the agent).
Baseline shifts like these might prevent the detection of increased illness
caused by the epidemic or the bioterrorist attack. Localized population
surges associated with major public events (for example, the Olympics)
are also likely to reduce the ability of existing surveillance systems to
detect infectious disease outbreaks. In this study, the researchers
developed a new class of surveillance systems called ‘‘epidemiological
network models.’’ These systems aim to improve the detection of
disease outbreaks by monitoring fluctuations in the relationships
between information detailing the use of various health-care resources
over time (data streams).

What Did the Researchers Do and Find? The researchers used data
collected over a 3-y period from five Boston hospitals on visits for
respiratory (breathing) problems and for gastrointestinal (stomach and
gut) problems, and on total visits (15 data streams in total), to construct a
network model that included all the possible pair-wise comparisons
between the data streams. They tested this model by comparing its
ability to detect simulated disease outbreaks implanted into data
collected over an additional year with that of a reference model based

on individual data streams. The network approach, they report, was
better at detecting localized outbreaks of respiratory and gastrointestinal
disease than the reference approach. To investigate how well the
network model dealt with baseline shifts in the use of health-care
resources, the researchers then added in a large population surge. The
detection performance of the reference model decreased in this test, but
the performance of the complete network model and of models that
included relationships between only some of the data streams remained
stable. Finally, the researchers tested what would happen in a situation
where there were large numbers of ‘‘worried well.’’ Again, the network
models detected disease outbreaks consistently better than the
reference model.

What Do These Findings Mean? These findings suggest that
epidemiological network systems that monitor the relationships
between health-care resource-utilization data streams might detect
disease outbreaks better than current systems under normal conditions
and might be less affected by unpredictable shifts in the baseline data.
However, because the tests of the new class of surveillance system
reported here used simulated infectious disease outbreaks and baseline
shifts, the network models may behave differently in real-life situations
or if built using data from other hospitals. Nevertheless, these findings
strongly suggest that public-health officials, provided they have
sufficient computer power at their disposal, might improve their ability
to detect disease outbreaks by using epidemiological network systems
alongside their current disease-surveillance systems.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0040210.

� Wikipedia pages on public health (note that Wikipedia is a free online
encyclopedia that anyone can edit, and is available in several
languages)
� A brief description from the World Health Organization of

public-health surveillance (in English, French, Spanish, Russian, Arabic,
and Chinese)
� A detailed report from the US Centers for Disease Control and

Prevention called ‘‘Framework for Evaluating Public Health
Surveillance Systems for the Early Detection of Outbreaks’’
� The International Society for Disease Surveillance Web site
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